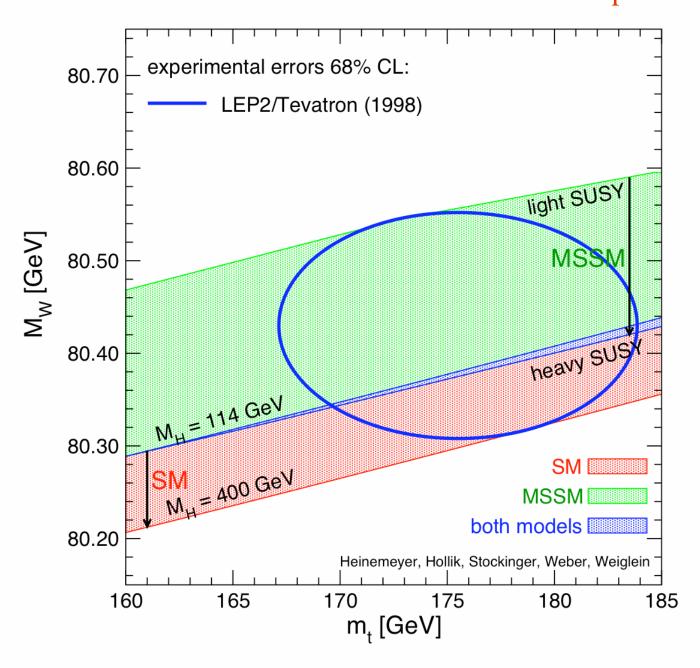
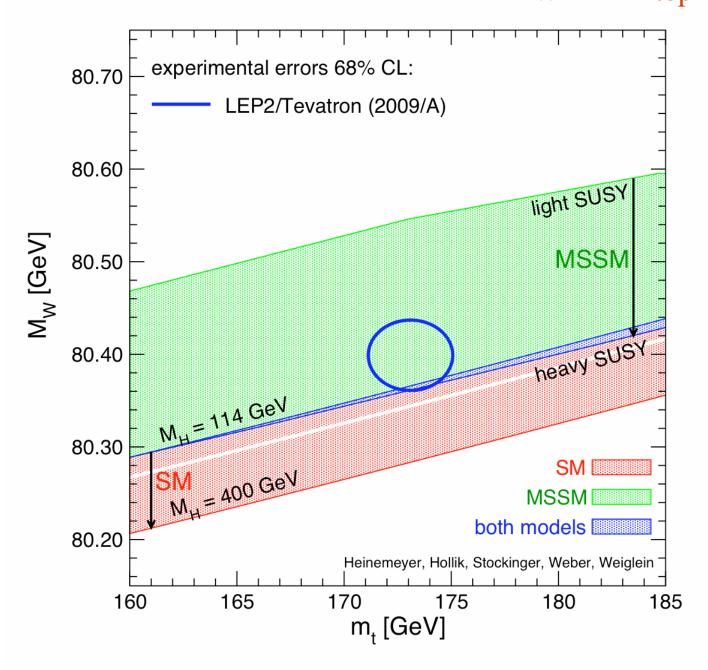

Uli Baur and the W Boson Mass Measurement at the Tevatron

Ashutosh Kotwal Duke University

Loopfest X Evanston, May 12, 2011


Uli's Interests in Precision Physics

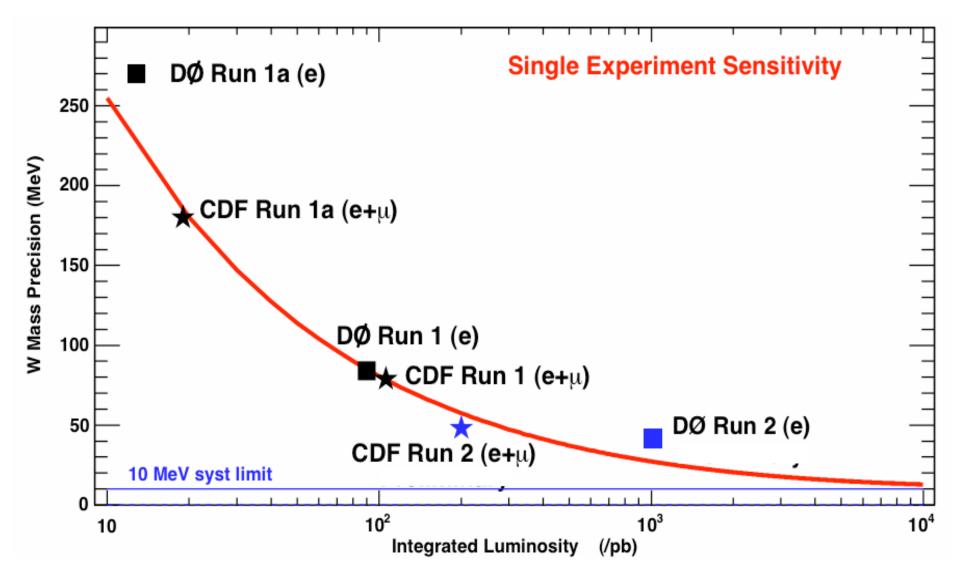
- QCD and PDF-related measurements
 - P_T spectrum of Z bosons
 - Measurement of angular decay distribution coefficients in W and Z boson decays to leptons
 - Charge asymmetry in W boson production and decay
 - Z boson rapidity spectrum
- Measurements related to electroweak sector
 - Top quark mass measurement
 - W boson mass measurement
 - W boson width measurement
 - Forward-backward asymmetry (A_{FB}) in Z boson decays
 - On-peak and high-mass


Uli's interest in the W boson mass

- Uli's took a deep and personal interest in the W boson mass measurement at the Tevatron
 - Recall long conversations about nitty-gritty details of the W mass analysis, starting 1995
- Uli as an experimentalist
 - He supervised Zarah Casilum, an experimental HEP student who worked on D0 via Stony Brook U.
 - Zarah and I worked together on the electronics upgrade of the D0 calorimeter for Tevatron Run II

Pre-Tevatron Run 2 $M_W vs M_{top}$

Current Tevatron & LEPII M_W vs M_{top}


W Boson Mass Fit Uncertainties (MeV) from CDF

(CDF, PRL 99:151801, 2007; Phys. Rev. D 77:112001, 2008)

		electrons	muons	common
	W statistics	48	54	0
	Lepton energy scale	30	17	17
	Lepton resolution	9	3	-3
	Recoil energy scale	9	9	9
	Recoil energy resolution	7	7	7
	Selection bias	3	1	0
	Lepton removal	8	5	5
Uli helped with QED	Backgrounds	8	9	0
	production dynamics	3	3	3
	Parton dist. Functions	11	11	11
	→ QED rad. Corrections	11	12	11
	Total systematic	39	27	26
	Total	62	60	

Systematic uncertainties shown in green: statistics-limited by control data samples

Improvement of M_w Uncertainty with Sample Statistics

Next target: 15-20 MeV measurement of $M_{\rm w}$ from the Tevatron

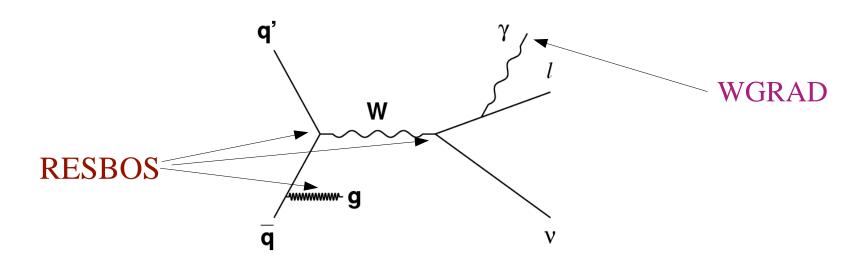
W Mass Status

- The W boson mass is a very interesting parameter to measure with increasing precision
- CDF Run 2 W mass result with 200 pb⁻¹ data:
 - $M_W = 80413 \pm 48 \text{ MeV}$
- D0 Run 2 W mass result with 1 fb⁻¹ data:
 - $M_{\rm W} = 80401 \pm 43 \ {\rm MeV}$
- Many systematics limited by statistics of control samples
 - CDF and D0 are both working on $\delta M_W < 25$ MeV measurements from ~ 2 fb⁻¹ (CDF) and ~ 4 fb⁻¹ (D0)
- Learning as we go: Tevatron \rightarrow LHC may produce $\delta M_W \sim 5-10$ MeV

M_w Measurement at LHC

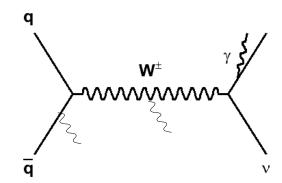
- Very high statistics samples of W and Z bosons
 - 10 fb⁻¹ at 14 TeV: 40 million W boson and 4 million Z boson candidates per decay channel per experiment
- Statistical uncertainty on W mass fit ~ 2 MeV
- Calibrating lepton energy response using the $Z \rightarrow ll$ mass resonance, best-case scenario of statistical limit ~ 5 MeV precision on calibrations
- Calibration of the hadronic calorimeter based on transverse momentum balance in $Z \rightarrow ll$ events also ~ 2 MeV statistical limit

• Total uncertainty on M_W ~ 5 MeV if $Z \rightarrow ll$ data can measure all the W boson systematics


M_w Measurement at LHC

- Can the $Z \rightarrow ll$ data constrain all the relevant W boson systematics?
- We must add other constraints from other mass resonances and tracking detectors

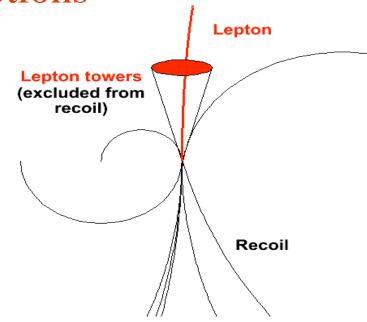
- With every increase in statistics of the data samples, we climb a new learning curve on the systematic effects
 - Improved calculations of QED radiative corrections will be needed
 - Better understanding of parton distributions from global fitting groups (CTEQ, MSTW, NN PDFs, Giele *et al*,)

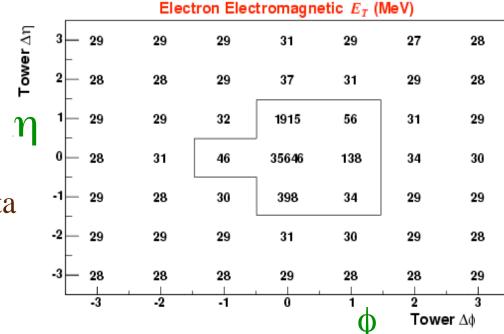

• large sample statistics at the LHC imply the potential is there for 5-10 MeV precision on $M_{\rm w}$

Generator-level Signal Simulation

- Generator-level input for W & Z simulation provided by RESBOS (C. Balazs & C.-P. Yuan, PRD56, 5558 (1997) and references therein), which
 - Calculates triple-differential production cross section, and p_T-dependent double-differential decay angular distribution
 - calculates boson p_T spectrum reliably over the relevant p_T range: includes tunable parameters in the non-perturbative regime at low p_T
- Radiative photons generated according to energy *vs* angle lookup table from WGRAD (U. Baur, S. Keller & D. Wackeroth, PRD59, 013002 (1998))

QED Radiative Corrections

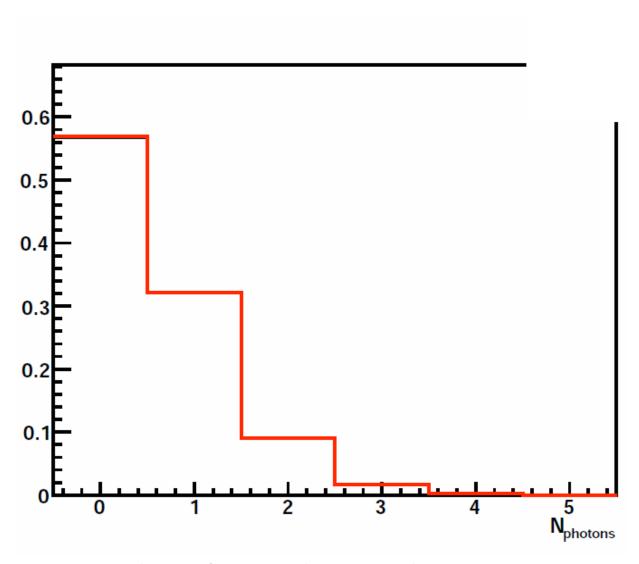



- We used Uli's complete NLO QED calculation (WGRAD) for single photon emission
 - We simulated final state radiation (FSR) photons
 - We estimated initial state radiation (ISR) and ISR-FSR interference to contribute ~ 5 MeV each, on top of ~200 MeV mass shift due to FSR.
- Based on 2-photon calculation (Carloni Calame *et. al.*, PRD69, 037301 (2004)) prediction: we took 5% of the total QED mass shift (~200 MeV) as systematic uncertainty

$$\Delta M_{\rm W} = 10 \ {\rm MeV}$$

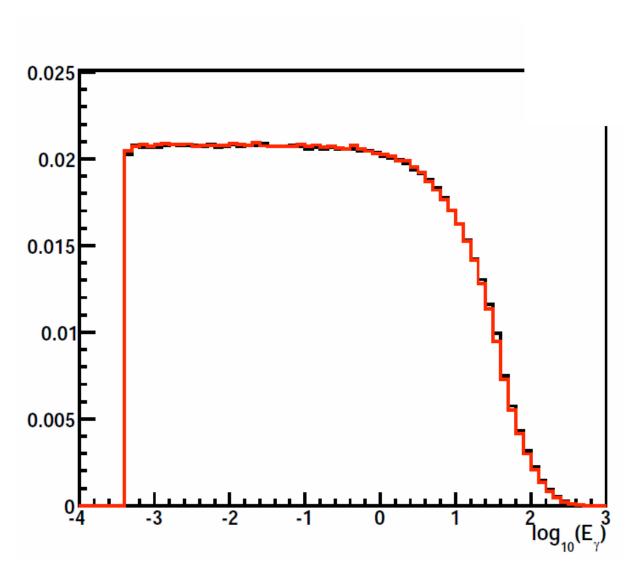
QED Radiative Corrections

- We remove the calorimeter towers containing lepton energy from the missing $E_{_{\rm T}}$ calculation
- 2^{nd} photon energy correction (10 ± 5) %
 - Energy and angular distribution of 2nd radiated photon needed

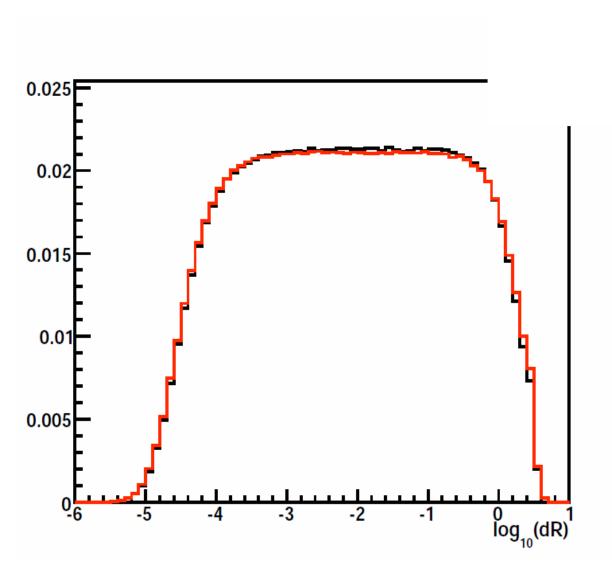


Electron channel W data

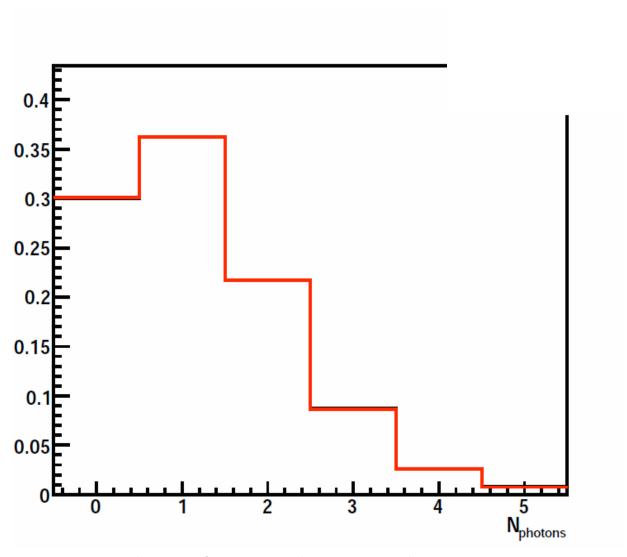
Multi-photon QED Generators


- New Strategy: benchmark multi-photon generators against each other and against WGRAD/ZGRAD programs at $O(\alpha)$
 - HORACE (Carloni Calame et al)
 - PHOTOS (Barberio & Was)
 - Both are leading-log photon showering algorithms
 - HORACE has exact O(α) mode to compare to WGRAD/ZGRAD
 - Show today: multi-photon spectra from HORACE and PHOTOS [studies by Ilija Bizjak (UCL), Bodhitha Jayatilaka (Duke), A. Kotwal (Duke)]
 - Number of FSR photons emitted per event
 - Energy of FSR photons
 - Angle between FSR photons and nearest lepton

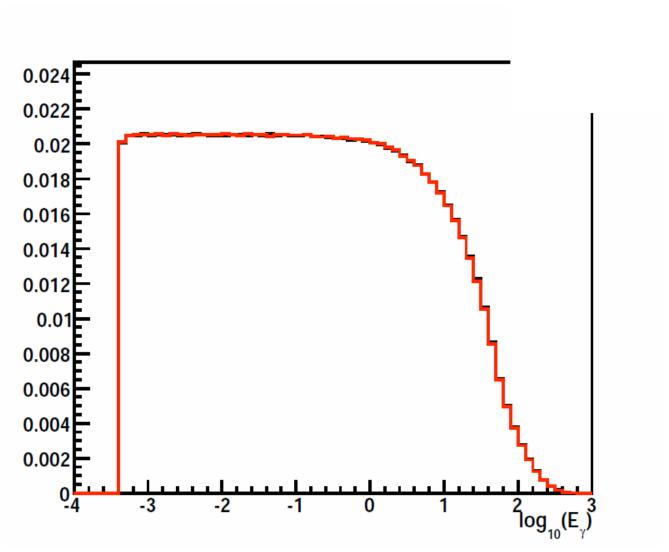
HORACE-PHOTOS Comparison for W->eu process


Number of FSR photons above 0.4 MeV

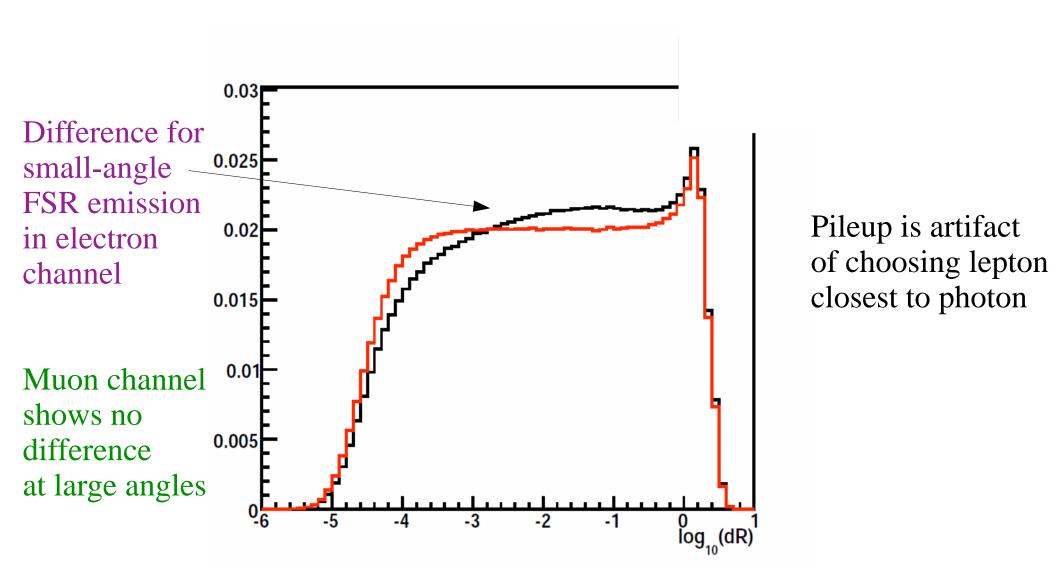
HORACE-PHOTOS Comparison for W->eu process


log₁₀(energy/MeV) distribution for FSR photons above 0.4 MeV

HORACE-PHOTOS Comparison for W->eu process


log₁₀(photon-lepton angle) distribution for FSR photons above 0.4 MeV

HORACE-PHOTOS Comparison for Z->ee process


Number of FSR photons above 0.4 MeV

HORACE-PHOTOS Comparison for Z->ee process

log₁₀(energy/MeV) distribution for FSR photons

HORACE-PHOTOS Comparison for Z->ee process

log₁₀(photon-lepton angle) distribution for FSR photons above 0.4 MeV

HORACE-PHOTOS Comparisons of boson mass fits

- We quantify the systematic differences between these generators by fitting simulated pseudo-data
- Differences in fitted masses shown below, with MC statistical error

fit type	$m_{\text{horace}} - m_{\text{photos}} \text{ (MeV)}$		
	$\operatorname{electron}$	muon	
W transverse mass	6.9 ± 2.7	0.0 ± 3.4	
W lepton p_T	3.9 ± 2.3	0.7 ± 2.3	
\overline{W} neutrino p_T	10.7 ± 3.8	3.3 ± 4.9	
W E/p energy scale	0.8 ± 0.6	-	
Z cluster mass	0.0 ± 2.3	-	
Z track mass	-1.1 ± 3.2	0.0 ± 1.9	

To be investigated...

Inspiration from Uli

• Using exact $O(\alpha)$ calculation as benchmark, we should be able to pin down QED systematic on next W mass measurement to 5 MeV

• At our recent W mass measurement workshop at Fermilab last year, Uli and Doreen talked about performing an exact $O(\alpha^2)$ calculation of W+2 γ and Z+2 γ

• These programs would provide the ultimate QED benchmark for W boson mass measurement at the 1-2 MeV level of precision

• We will keep improving the W mass precision and hope that these programs become necessary!